当前位置: 澳门皇冠赌场网站 > 科学研究 > 学术活动 > 正文

热点关注

【学术报告】2019年8月26日陈浩副教授来我院举办系列学术讲座

2019-08-23 23:02:57    浏览次数:

字体 色彩方案

报告人: 陈浩 副教授(重庆师范大学

报告人简介: 陈 浩,毕业于澳门皇冠赌场网站,获理学博士学位, 现为重庆师范大学数学科学学院副教授,中国仿真算法专业委员会委员。主要从事微分方程数值解及数值线性代数研究,主持过国家自然科学基金及省级科研项目,在《J. Comput. Phys.》、《Numer. Linear. Alge. Appl.》、《BIT Numer. Math.》等计算数学重要刊物上发表科研论文20余篇。

报告(一)

报告题目Preconditioned iterative methods for implicit Runge-Kutta and boundary value method discretizations of parabolic PDEs

报告摘要:In this talk, we discuss preconditioned iterative methods for linear systems arising in numerical integration of parabolic PDEs by implicit Runge-Kutta and boundary value methods. Preconditioning strategies based on Kronecker product –based splitting are proposed, and some useful properties of the preconditioned matrix are established.

报告时间: 2019年8月26日(星期一)上午9:00-10:30

报告地点: 科技楼南楼811室


报告(二)

报告题目:Kronecker product-based preconditioners for fractional diffusion equations

报告摘要:In this talk, we will consider preconditioned iterative methods for linear systems arising in the numerical discretizations of fractional diffusion equations. Fractional diffusion equations of 1,2,3-dimensional are covered. Preconditioning strategies based on a Kronecker product-based splitting and structure preserving approximation to 1D discretized fractional diffusion operator are proposed. Numerical examples are presented to illustrate the effectiveness of the approachx.

报告时间: 2019年8月26日(星期一)上午10:30-12:00

报告地点: 科技楼南楼811室


报告(三)

报告题目:Some splitting preconditioners for the Bidomain model

报告摘要In this talk, we consider fast iterative solvers for block two-by-two linear systems arising in numerical discretizations of the Bidomain model. Time integration schemes including Strang splitting and implicit Runge-Kutta methods are discussed. Some alternating splitting iteration methods are established and analyzed. The potential of the approaches is illustrated by numerical experiments.

报告时间: 2019年8月26日(星期一)3:00-4:30

报告地点: 科技楼南楼811室


报告(

报告题:Fast iterative solver for boundary value method discretizations of a parabolic optimal control problem

报告摘要:In this talk, a distributed optimal control problem with the constrained of a parabolic PDE is considered. Boundary value methods are used to solve the coupled initial/final value problems arising from the first order optimality conditions for this problem. Preconditioning method based on a matching strategy and a Kronecker product-based splitting technique is established. Numerical experiments are presented to illustrate the accuracy and computational efficiency of the approach.

报告时间: 2019年8月26日(星期一)下午4:20-6:00

报告地点: 科技楼南楼811室